Roadmap sustainable biofuels for shipping

Which strategy to follow?

Loes Knotter

22 January, 2019
Fuels of the Future, Berlin
Key-take away message:

Biofuels are already a cost-competitive low carbon fuel option for shipping containing no (or only limited) sulphur. However, a ‘dedicated’ marine low carbon fuel has not yet been developed.

Design criteria:

• Fuel on basis of extensive feedstock base
• Price competitive conversion
• Compatibility with existing engines
• New engines / new vessels have other options
• Biorefinery: multiple markets
• Development to e-Refinery and electrochemical fuels
Netherlands Platform Sustainable Biofuels

- Independent knowledge and innovation platform on all biofuels and renewable fuels
- Initiated partly financed by the NL Ministry of Infrastructure and Water Management
- An association of sector players,
- Founded October 2016

- Mission: stimulating demand and deployment of renewable fuels and their production
NL International bunkering outnumbers the transport fuels on Dutch territory

Source: CBS Statistic Netherlands
Energy in the EU international shipping sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>Netherlands</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int. shipping</td>
<td>Road & Rail</td>
</tr>
<tr>
<td>Energy use (PJ)</td>
<td>512 PJ</td>
<td>415 PJ</td>
</tr>
<tr>
<td>CO2 emissions (mln tCO2-eq)</td>
<td>40.5</td>
<td>29.4</td>
</tr>
</tbody>
</table>

Source: Eurostat: (data for 2016)
Two recent Platform publications

www.platformduurzamebiobrandstoffen.nl/infotheek
Shipping CO$_2$ emission reduction potential from individual measures

A recent review of around 150 studies by Bouman et al (2017) pointed to biofuels as having the highest CO$_2$ emissions reduction potential, compared to other energy efficiency and alternative fuel options.
E4tech evaluation of biofuel options for shipping

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Readiness of fuel production</th>
<th>Compatibility with current engine and vessel (typical to sector type)</th>
<th>GHG reduction potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established and used widely,</td>
<td>Established and used widely, readily available and fully developed.</td>
<td>No modification to engine or infrastructure - Drop in fuel or high blends</td>
<td>>90% GHG savings</td>
</tr>
<tr>
<td>readily available and fully</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>developed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercially available but</td>
<td>Commercially available but not in wide use, could be further developed.</td>
<td>Considerable changes to engine, fueling system and/or storage/infrastructure, or low blends</td>
<td>60-90% GHG savings</td>
</tr>
<tr>
<td>not in wide use, could be</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>further developed.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working demonstration plant</td>
<td>Working demonstration plant</td>
<td>New vessel required</td>
<td><60% GHG savings</td>
</tr>
</tbody>
</table>
Biofuels based on waste oils and fats

- All the advantages of drop-in
- Main barrier: limitations on feedstocks
- HVO - compatible with engines, commercial production
- SVO - compatibility with deep sea engines, modifications necessary for use in short-sea and inland shipping vessels
- FAME/biodiesel - commercially available and widely used and more suitable for use in diesel engines than SVO
 - ISO 8217 - versus statement Wärtsila

GoodFuels brings bio-MGO/bio-HFO to the market
Alcohols: ethanol/methanol (DME)

- Global availability (ethanol / methanol)
- Potential extensive feedstock base, including e-methanol
- Substantial barrier: incompatibility with existing engines/infrastructure
- For new vessels: methanol/ DME-vessel is a lower cost option than LNG-vessel

With the Methanol Institute we work on operational aspects of methanol infrastructure in ports.
bio-LNG/bio-CNG

- For LNG-vessels bio-LNG is an interesting biofuel option.
- The same applies for bio-CNG, however more proof of concept is necessary according to E4tech. It sees the CNG-option more suitable in short sea and inland shipping.
New options FT Diesel / Upgraded Pyrolysis Oil

- Drop-in capabilities and extensive feedstock base
- Further technology developments required
- In theory, it is possible to produce any intermediary between crude and fully upgraded pyrolysis oil to produce a suitable (cost-competitive) fuel for particular engines, but this would require detailed testing with an engine manufacturer.
Biofuel options for inland shipping

- UPO
- FT
- DME
- EtOH 2G
- Bio-MeOH**
- Bio-LNG/CNG **
- HVO*
- FAME*
- EtOH 1G

GHG emission reduction potential: Very high, High, Medium

* Can achieve high GHG emission saving when using waste oils
** Readiness of fuel production depends on the production route
Biofuel options for deep-sea shipping

- **UPO**
- **SVO**
- **HVO**
- **Bio-MeOH**
- **DME**
- **EtOH 2G**
- **bio LNG**
- **EtOH 1G**
- **FAME**

GHG emission reduction potential:
- Very high
- High
- Medium
- Added/moved for deep-sea

Ready of fuel production:
- *Can achieve high GHG emission saving when using waste oils*
- **Readiness of fuel production depends on the production route***

Compatibility:
- Low
- High

Deep-sea shipping
Comparing GHG-reduction potential

Figure 4-2: GHG emission factors for marine fuels and selected biofuels220,221,222,223
Comparing prices

Figure 4-3: Prices and production costs of marine fuels and selected biofuels. Prices are in light purple and production cost estimates in dark purple225,226.
How to get bio and renewable fuels to the international shipping market?

• Nothing so practical as (international) legislation
• IMO GHG Reduction target -50% by 2050. Demand from the shipping sector incentivates availability. (start already uptake of low carbon fuels in the short-term and mid-term measures)
• Missed opportunity for not connecting GHG reduction ambition with Sulphur regulation
• Dutch inland shipping sector is proposing a 30% GHG-reduction target by 2030 in national implementation of Red 2
• RED 2: 1,2 multiplier for shipping
Competition for biofuels between transport sectors, EU

EU Biofuel deployment under RED II (baseline)

- Advanced Aviation (IX-A)
- Used F&O Aviation (IX-B)
- Advanced Marine (IX-A)
- Used F&O Marine (IX-B)
- Conventional Marine
- Advanced Road (IX-A)
- Used F&O Road (IX-B)
- Conventional Road

Source: Grijpma, 2018
Competition for biofuels between transport sectors, the Netherlands

NL biofuel deployment under RED II (baseline)

Source: Grijpma, 2018
Market segmentation

GoodFuels Marine

GoodFuels Marine is pioneer and global market leader for marine biofuels.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Purchase drivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredging & offshore wind</td>
<td>Green public procurement</td>
</tr>
<tr>
<td>Government</td>
<td>National GHG targets and energy security</td>
</tr>
<tr>
<td>Port authorities & harbor services</td>
<td>Exemplary role model, air quality, regulation, inherent drivers</td>
</tr>
<tr>
<td>Pax transport</td>
<td>Green public procurement (ferries), passenger demands & port access (cruise)</td>
</tr>
<tr>
<td>Inland waterways</td>
<td>Air quality regulation, CO₂ ambitions of cargo owners</td>
</tr>
<tr>
<td>Ocean freight</td>
<td>CO₂ ambitions of cargo owners</td>
</tr>
<tr>
<td>Boating & yachting</td>
<td>Port's green reputation, air quality regulation & intrinsic motivation of boat owners</td>
</tr>
</tbody>
</table>
Port of Rotterdam (PoR) energy transition programme

- Advocacy for alternative fuels
 - Dutch National policy: input green deal maritime sector / implementation RED2
 - EU (RED2)
 - IMO (MEPC - short term GHG measures)
 - World Ports Carbon Action Programma (international collaboration also on alternative fuels)

- PoR funding for demonstration Low Carbon Fuels in sea-going vessels. (€5 million 2019 - 2022) Launch Jan 2019

- Low Carbon Trade Lanes
 - Developing alternative fuel supply in partnerships on important seagoing trade lanes.
The transition for the NL petrochemical complex

Refinery 2050 Refining the clean molecule
Bio-refinery to maximise added value: co-producing bio-chemicals/materials and energy

SUSTAINABLE BIOFUELS TECHNOLOGY LAB

From gasification-based and biorefinery-based biofuel concepts to large-scale implementation of biofuels in all transport segments

- Create two strong biofuels development platforms by expanding existing gasification and bio-refinery infrastructure with the key options to produce biofuels
- Create sustainable alternatives for the Dutch fuel and chemical industry
- Ensure close cooperation with industry, universities, TO2’s (e.g. engine labs) and with national initiatives such as the expertise center for biomass gasification InVesta and Biorizon

Activities

- Gasification and (Organosolv) fractionation-based biorefining
- Bio-LNG production
- Fischer-Tropsch (FT) biofuel production
- Methanol biofuel production
- Bio-ethanol/Bio-butanol fuel production
- Novel furanics based fuel components
- Bio-heavy fuel oil production
- Cost reduction through co-production

From: A vision on Sustainable fuels for transport (SER vision program), 2014
What’s on the Roadmap Agenda:

• Address technical, economic and operational barriers to the use of biofuels in shipping

• Develop dedicated marine low-carbon biofuels taking into account:
 • Access to resources
 • Dedicated technology development for cost-competitive marine engine-fuel conversion
 • Development of bio-refinery / e-refinery business cases

• Dutch government intends 200 million EUR support for refineries for renewable fuel production (to be deployed in NL)
More information?

www.platformduurzamebiobrandstoffen.nl

@PlatfDuurzBio

Contact the Platform:

Loes Knotter

Loes.knotter@platformduurzamebiobrandstoffen.nl
+31 6 48 88 93 63