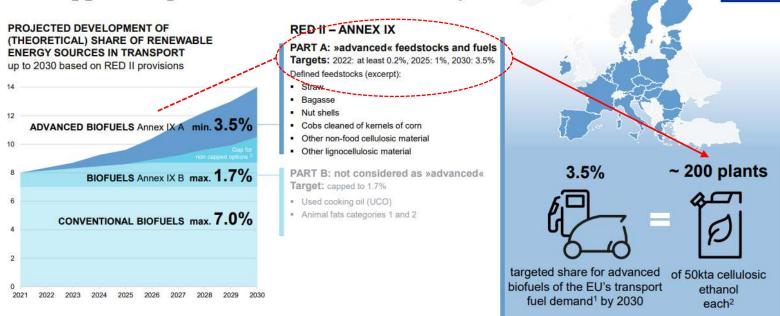
Alcohol based (jet) fuels

Sugar and lignin platform based value chains

Ana M. Lopez-Contreras, Jacco van Haveren, Rajeesh Pazhavelikkakath Purushothaman, Richard Gosselink, Wolter Elbersen, René van Ree – Wageningen Food and Biobased Research



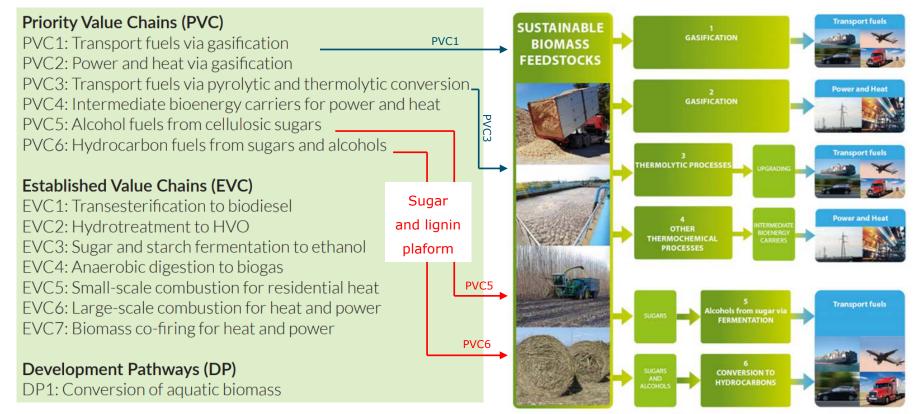
12th January 2021

Biofuels for transport – policy goals in a nuttshell

EU market for advanced biofuel under RED II: the supportive path to decarbonize mobility

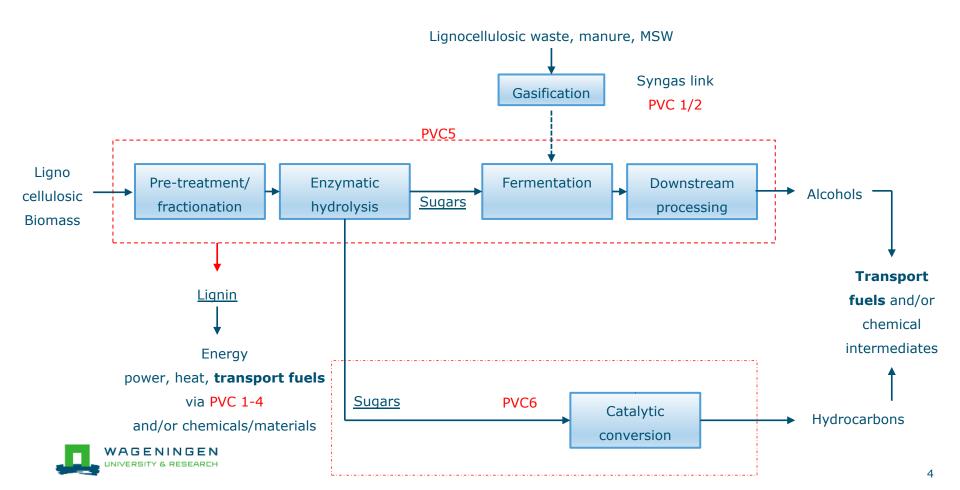
¹ Source: http://www.etipbioenergy.eu/everyone/advanced-boifuels

² Assumption: 50kta sunliquid standard capacity; EU transport fuel demand in 2030 remains at similar levels as in 2016 - Total transport fuel demand (road & rail) in 2016: 306.567 ktoe; Source: Eurostat ³ Additional advanced fuels from Annex IXA, renewable electricity (used for transport), any other NON capped options (e.g. H2 if not produced neither with FOOD feedstock nor ANNEX IXB feedstock)


Source: Clariant, Paolo Corvo @ @ ETIP Bioenergy WG2 webinar, 11 Nov 2020

ETIP BIOENERGY – Bioenergy value chains

Focus lecture: PVC5 and PVC6 with links to PVC1-PVC4


(syngas fermentation and thermal conversion lignin)

GENINGEN

Source: ETIP Bioenergy, Current status of Advanced Biofuels demonstrations in Europe, March 2020

Sugar and lignin platform – general scheme

Alcohol fuels from cellulosic sugars (PVC5): EU

*TRL6-7: demonstration TRL8: 1st of a kind commercial (flagship) TRL9: commercial

Company	Country	City	TRL*	Start-up year	Installed capacity (t/a)
Borregaard** (ChemCell Ethanol)	Norway	Sarpsborg	9	1938 (operational)	15800
Domsjoe Fabriker	Sweden	Ornskoldsvik	8	1940 (operational)	19000
SEKAB (Biorefinery Demo Plant)	Sweden	Ornskoldsvik	8	2004 (operational)	160
Chempolis Ltd. (Biorefining plant)	Finland	Oulu	6-7	2008 (operational)	5000
Clariant (Sunliquid)	Germany	Straubing	6-7	2012 (operational)	1000
Borregaard (BALI Biorefinery Demo)	Norway	Sarpsborg	6-7	2012 (operational)	110
IFP (<i>Futurol</i>)	France	Bucy-Le-Long	6-7	2016 (operational)	350
ST1 (Cellulonix Kajjani)	Finland	Kajaani	6-7	2017 (operational)	8000
AustroCel Hallein	Austria	Hallein	8	2020 (start-up phase)	30000

Most ethanol from agro-residues; Borregaard/Domsjoe/Austrocel: ethanol from brown liquor wood pulping

Other non-cellulosic sugars based production of alcohols:

ST1 also runs 5 Ethanolix facilities 1000-7000 t/a in FIN (4) and SWE (1) organic wastes to ethanol BioMCN (Farmsum, NL): methanol from glycerine @ TRL8, 2009 (currently running at lower capacity from biogas) Arcelor Mittal (Ghent, Belgium) industrial waste gases to ethanol 16000 t/a @ TRL9 using LanzaTech technology; under construction, start-up 2020 Sodra Cell (Monsteras, SWE) upgrading pulping based methanol to fuel/chemical grade methanol 5000 t/a @ TRL9; under construction, start-up 2020

Alcohol fuels from cellulosic sugars (PVC5): EU

*TRL6-7: demonstration TRL8: 1st of a kind commercial (flagship) TRL9: commercial

Company	Country	City	TRL*	Start-up year	Installed capacity (t/a)
Clariant	Romania	Podari	8	2021 (under construction)	50000
Versalis	Italy	Crescentino	8	2020 (re-start)	40000
Sainc Energy Limited (Cordoba)	Spain	Villaralto	8	2020 (planned)	25000
Kanteleen Voima (Northfuel biorefinery, SEKAB techn.)	Finland	Haapavesi	6-7	2021 (planned)	65000
ST1 (Cellulonix Kajaani 2)	Finland	Kaajani	8	2024 (planned)	40000
ST1 (Cellulonix Pietasari)	Norway	Pietarsaari	8	2024 (planned)	40000
ST1 (Cellulonix Follum)	Norway	Ringerike	8	2024 (planned)	40000
Enviral (license Clariant's Sunliquid technology)	Slovakia	Leopoldov	9	Planned	50000
ORLEN Group (license Clariant's Sunliquid technology)	Poland	Jedkicze	9	Planned	25000
Eta Bio Ltd. (license Clariant's Sunliquid technology)	Bulgaria	Toshevo	9	Planned	50000
INA	Croatia	Sisak	8	Planned	55000

Sources: ETIP Bioenergy, Current status of Advanced Biofuels demonstrations in Europe, March 2020; Clariant, Paolo Corvo @ @ ETIP Bioenergy WG2 webinar, 11 Nov 2020

Hydrocarbon fuels from sugars and alcohols (PVC6): EU

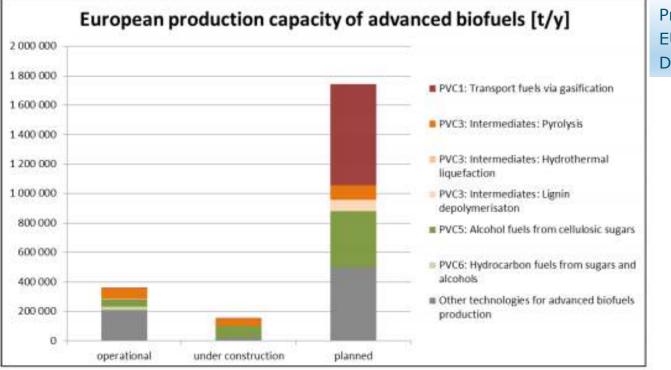
Company	Country	City	TRL*	Start-up year	Installed capacity (t/a)
Global Bioenergies (isobutene demo)*	Germany	Leuna	6-7	2017 (operational)	100
Ekobenz (<i>Bogumilow plant</i>)	Poland	Kleszczow	8	2019 (operational)	22500
IBN-One (JV Cristal Union and Global Bioenergies)	France		8	2017 (?)	50000

*Feedstock beet sugar; H2020 innovation projects to process agricultural residues and softwood

*TRL6-7: demonstration TRL8: 1st of a kind commercial (flagship) TRL9: commercial

Source: ETIP Bioenergy, Current status of Advanced Biofuels demonstrations in Europe, March 2020

Lignin to bioliquids (PVC3): EU


Company	Country	City	TRL*	Start-up year	Installed capacity (t/a)
RenFuel**	Sweden	Backhammar	6-7	2016 Operational	3200
RenFuel	Sweden	Vallvik	8	2021 Planned	77000

*TRL6-7: demonstration; TRL8: 1st of a kind commercial (flagship); TRL9: commercial

**RenFuel: lignin depolymerisation to Lignol liquid for upgrading in a refinery, portfolio of fuels

Current EU production capacity advanced biofuels

Production cost cellulosic EtOH*: EU: about 0.55 €/I Diesel/gasoline: 0,40 €/I

> Need to fulfil EC policy goal: Several hundreds of additional plants necessary to meet 2030 policy goal (approx. 8Mt SAF/y) Cost reduction is needed

Both innovation and deployment support needed!

Source: ETIP Bioenergy, Current status of Advanced Biofuels demonstrations in Europe, March 2020

*Source: LNEG, Franncisco Girio @ ETIP Bioenergy WG2 webinar, 11 Nov 2020

Sugar and lignin platform – innovations needed for cost reduction

- Cost effective and sustainable feedstock supply (Annex IX RED II)
- Reduction CAPEX and OPEX costs
 - Pre-treatment: more efficient and more sustainable
 - Enzymatic hydrolysis: on-site enzyme production and enzyme recycling
 - Fermentation: High yields/productivity strains, synthetic biology, GMOs, nonsterile systems
 - Lignin valorisation instead of burning for (process) energy
 - Process integration & intensification
 - Catalyst robustness for lignin upgrading and chemical steps
- Valorisation of co-products: process residues (animal feed, soil improver, fertilizers), biobased CO₂ (to negative GHG emission value chains), waste water to biogas, etc.
- For acceleration of developments: Integration of pilots with existing facilities at commercial scale, for example 1st Gen ethanol

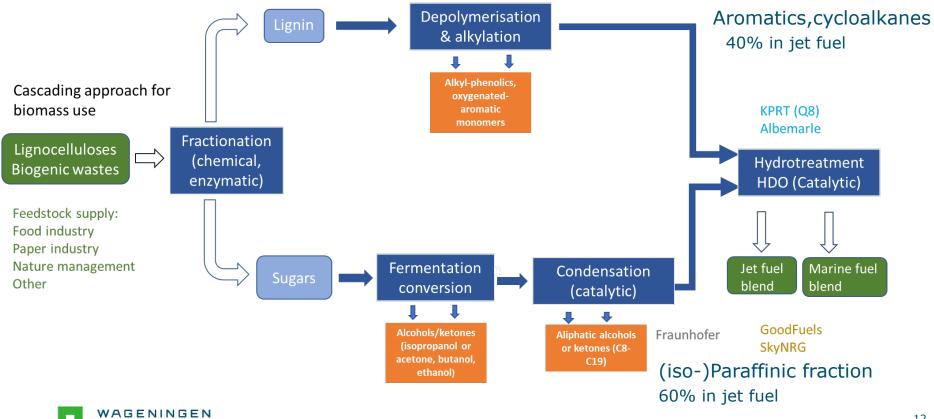
Sugar and lignin platform – NL deployment traject

Blue prints potential demonstrations and flagship initiatives sites:

- Harbours (Rotterdam, Amsterdam) or other sites with accessibility to feedstocks (local, imported), chemical industry and for fuel distribution (pipelines)
- Integration conventional and advanced ethanol production (example:C6 to EtOH, C5 to BuOH, lignin to chemicals, fuels)

Blue prints supported value chain innovations:

- 1. Sustainable feedstock/biomass supply
- 2. Pre-treatment & storage
- 3. Primary conversion
- 4. Downstream processing
- 5. Secondary conversion
- 6. Product upgrading, incl. co-products (lignin, CO₂, etc.)
- 7. Product application, incl. co-products
- 8. Process integration and intensification



Other support measures:

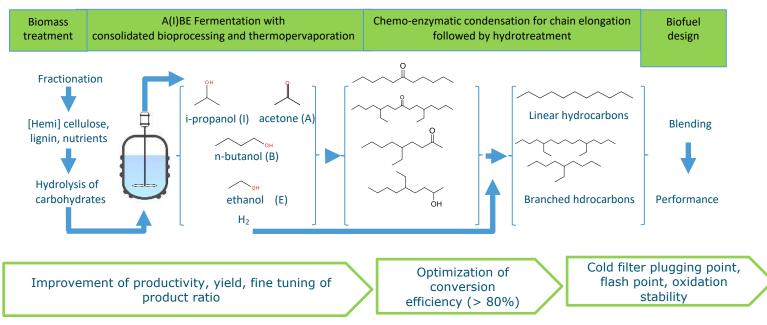
- Sector based roadmapping
- Exchange best-practices (stakerholder platform)
- Solving non-technical deployment bottle-necks
- Education and training

Advanced biofuels: WUR vision

NIVERSITY & RESEARCH

Examples of wet organic wastes in NL

	Feedstock	Volume (Ktons d.m.)	Current use		
Agriculture					
	Wet streams arable farming	985	Anaerobic digestion		
	Wet streams horticulture	356			
Food & Brewe	eries				
	Brewer's spent grains	100			
	Cereal/potato starch residues	583	Anaerobic digestion/Feed		
Paper industry					
	Paper residues	256			
	Paper sludge	531	Combustion		


Food and beverage industry wastes are estimated at ~8100 kton/y (~2025 kton d.m.). Estimated SAF needs in 2030 are 500-700ktons/y in NL. In EU sufficient lignocellulosic biomass for SAF

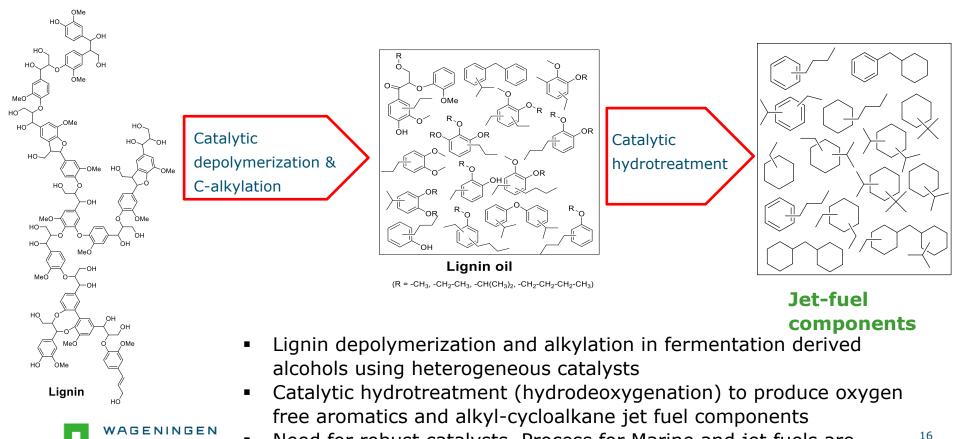
Sources:. Koppejan, Elbersen et al. Beschikbaarheid van nederlandse biomassa voor electriciteit en warmte in 2020 (2009) . Senternovem rapport, project nr 200809

Schulze P et al. Biomassapotentieel in Nederland (2017) Gas Unie document GCS.17.R.10032629.2

Alcohols to paraffinic jet-fuel components

- Condensation of A(I)BE in one step to a mixture of C8-C19 aliphatic ketones/alcohols
- Catalytic hydrotreatment in collaboration with industrial partners to produce linear and branched aliphatic jet fuel components

Butanol (vs ethanol) as transport fuel or intermediate


Benefits:

- Higher energy content: 36.2 MJ/kg butanol vs 29.7 MJ/kg ethanol, 43.5 MJ/kg gasoline
- Lower vapor pressure, transport options in pipelines: 0.8 Kpa butanol vs 7.8 kPa ethanol
- Increased energy security: Strains are robust, use C5, C6 sugars and other (glycerol, starch, etc)
- Fewer emissions, uses in engines as such/blend or small adaptations: Cleaner fuel, Fewer emissions than fossil fuels. Fuel derived from B/I/A/E mixtures is possible at high yield

Drawbacks:

- Lower yields from substrate: 0.2 g butanol/g sugar vs 0.5 g ethanol/g sugar
 - Improvement: strains with increased yields by reusing CO2, using GMO
- Longer fermentation times, lower productivities: Use advanced reactors with product removal
- Higher viscosity than ethanol: maybe adaptations are needed to engines when used pure

Lignin to aromatic/cycloalkane jet-fuel components

 Need for robust catalysts. Process for Marine and jet fuels are different

Value Chains in WUR

Feedstock	Conversion	Products	Comments
Potato wastes	Fermentation to ABE- Condensation-HDO	Jet fuel By products: feed vitB ₁₂ , H ₂ , CO ₂	Proof of principle LCA, TEA completed BioJetFuel TRL 4-5
Paper sludge	Fermentation to IBE- Enz/chem condensation -HDO	Liquid fuels, marine By products: feed vitB ₁₂ , H ₂ , CO ₂	In progress TRL 2-3
Lignocellulosics Wood pellets EU-Brazil	Fermentation to ABE Fermentation to EtOH	Alcohols as fuels Value chains to be defined	C6, C5 streams C5 need detox In progress, TRL 2-3
Off gases (CO ₂ , CO/H ₂)	Fermentation, enzymes, Mixotrophy	Alcohols for the chemical market Lactic acid, PHB	Broad EU project In progress TRL 1-3

Thank you for your attention!

Questions?/Remarks?

