Programme

14h-14h05: Welcome and introduction 14h05-14h10: Recap 1st Biomob session

Seaweeds

14h10-14h25: Presentation by Jaap van Hal (TNO Seaweed Lab)

14h25-14h50: Questions and discussion

14h50-14h55: Short break

Peatlands

14h55-15h05: Peatland introduction by Platform Duurzame Biobrandstoffen

15h05-15h20: Case studies Paludiculture by Hans Schutten (Wetlands International)

15h20-15h45: Questions and discussion

Break out sessions

15h45-16h: Brain storming session and idea exchange

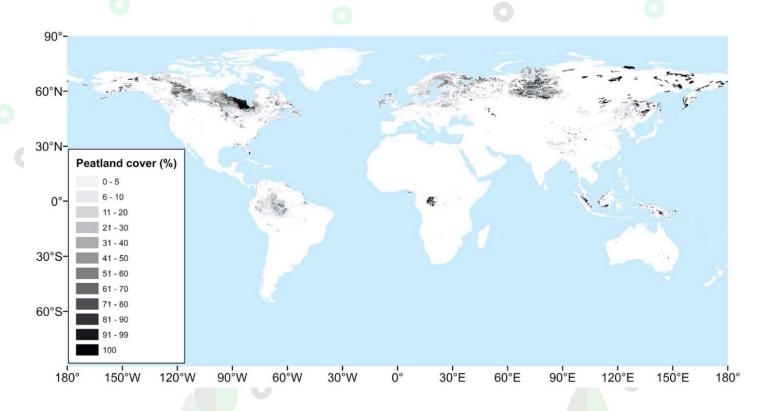
16h: End of Masterclass

Peatlands: Wetter ways of farming

Wetlands International

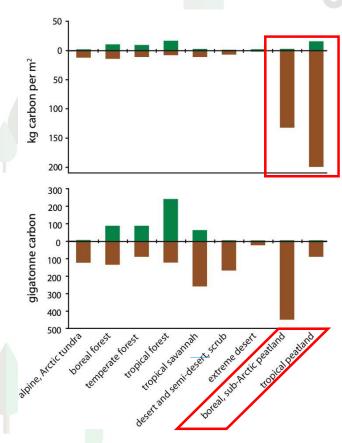
Peatlands and how they function

- "Terrestrial wetland ecosystem in which the production of organic matter exceeds its decomposition rate and a net accumulation of peat results" (Wetlands International)
- Peatlands provides several ecosystem services e.g.:
 - Climate regulation
 - Water purification
 - Habitat for species
 - Bio feedstock
 - Recreational and educational opportunities


ECOSYSTEM SERVICES IN A HEALTHY PEATLAND

Source: IUCN

Geospatial cover of peatlands



Majority of peatlands: Boreal and temperate areas

Large carbon storage capacity of peatlands

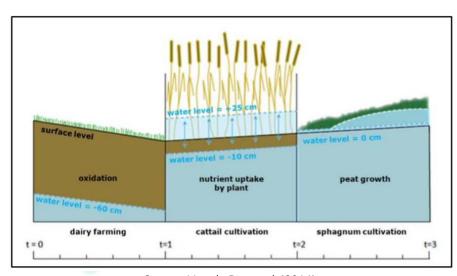
- Peatlands have the highest carbon storage capacity per area of all land types, 30% of all land carbon stock
- Cover only ~ 3% of Earth's surface
- Compared to forests, more carbon in peatlands is stored in the soil
- Difference between boreal and tropical peatlands:
 - Largest carbon stock in boreal peatlands
 - Tropical peatlands have higher carbon storage capacity

Current use of peatlands causes CO₂-eq emissions

- Peatlands are drained for agriculture
 - S-E Asia: conversion to plantations (palm oil/pulp)
 - Europe/North America: vegetables, cereals and livestock pastures
- Land subsidence + decomposition of organic carbon \rightarrow Net GHG emissions

Global

- Drained peatlands = 63 million ha
- Global emissions from drained peatlands = $2 \text{ Gtonne CO}_2 \text{ annually}$


EU

- Annual emissions from drained peatlands in EU = 220 Mtonne CO_2 annually
 - Equals 5% of annual EU emissions

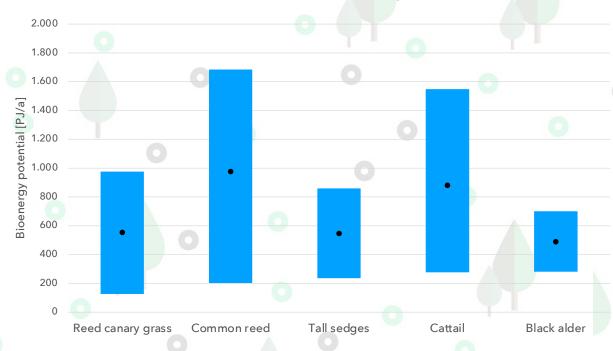
Paludiculture: Restoration with socio-economic benefits

- Paludiculture is the practice of crop production on wet soils, predominantly occurring on peatlands
 - Preservation and restoration of peatlands
 - Production of sustainable biomass
- Drained agricultural peatland as a first rewetting target
- Rewetting 30% globally of the most vulnerable drained peatlands could save
 1 Gtonne CO₂ per year! (University of Greifswald)
- Requires different agricultural practices

Source: Van de Riet et al. (2014)

Exploring paludiculture bioenergy potential

- Chosen potential paludicrops:
 - Reed canary grass
 - Common reed
 - Tall sedges
 - Cattail
 - Black elder
- Choice depends on local circumstances (water level, economic interest, end use)
- Other potential crops (e.g. berries) not taken into account
- Only focusses on bioenergy of paludicrops, not GHGe savings from rewetting peatlands (another potential win-win!)


Exploring paludiculture bioenergy potential in Europe

- Assumption: use drained peatland for conventional agriculture and rewet it for paludiculture crops
- Peatlands used for agricultural practices in Europe: 7.7 million ha
 - Excluded: European Russia (1.9 million ha) and Belarus (1.4 million ha)
- Biomass yields of paludicrops: 2 25 t DM/ha/a (large range due to crop type and environmental external factors)
- Lower heating values: 16.5 18.6 GJ/t DM
- Assumed energy conversion factor 50%

Significant bioenergy potentials from paludiculture

- Total bioenergy potential: 130 1,680 PJ/a
- Corresponds to 1 15% of EU road transport energy consumption
- This is the absolute maximum potential in Europe if all drained peatland (currently used or abandoned) were used for bioenergy paludiculture

Side notes on this analysis

- Rewetting of agricultural peatlands would entail a loss of existing food crops and pasture lands
 - Compensation elsewhere needed
- Biogeographical factors:
 - Different yields of the same paludicrop in different regions
 - Not every paludicrop suitable for every terrain
- Different paludicrops used for different applications, not only bioenergy purposes but also for building material, fodder, food, etc.

